Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.

Identifieur interne : 000286 ( Main/Exploration ); précédent : 000285; suivant : 000287

CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.

Auteurs : Ji-Yul Jung [Corée du Sud] ; Ji Hoon Ahn [Corée du Sud] ; Daniel P. Schachtman [États-Unis]

Source :

RBID : pubmed:30424734

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully elucidated in plants.

RESULTS

Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins (ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species (ROS) were produced in plant roots under nitrate starvation and H

CONCLUSION

This work adds to what is known about nitrogen sensing and signaling through the findings that the ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.


DOI: 10.1186/s12870-018-1512-1
PubMed: 30424734
PubMed Central: PMC6234535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.</title>
<author>
<name sortKey="Jung, Ji Yul" sort="Jung, Ji Yul" uniqKey="Jung J" first="Ji-Yul" last="Jung">Ji-Yul Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea. vinejung@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Ji Hoon" sort="Ahn, Ji Hoon" uniqKey="Ahn J" first="Ji Hoon" last="Ahn">Ji Hoon Ahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schachtman, Daniel P" sort="Schachtman, Daniel P" uniqKey="Schachtman D" first="Daniel P" last="Schachtman">Daniel P. Schachtman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE, 68588, USA. daniel.schachtman@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE, 68588</wicri:regionArea>
<wicri:noRegion>68588</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30424734</idno>
<idno type="pmid">30424734</idno>
<idno type="doi">10.1186/s12870-018-1512-1</idno>
<idno type="pmc">PMC6234535</idno>
<idno type="wicri:Area/Main/Corpus">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000194</idno>
<idno type="wicri:Area/Main/Curation">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000194</idno>
<idno type="wicri:Area/Main/Exploration">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.</title>
<author>
<name sortKey="Jung, Ji Yul" sort="Jung, Ji Yul" uniqKey="Jung J" first="Ji-Yul" last="Jung">Ji-Yul Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea. vinejung@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Ji Hoon" sort="Ahn, Ji Hoon" uniqKey="Ahn J" first="Ji Hoon" last="Ahn">Ji Hoon Ahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schachtman, Daniel P" sort="Schachtman, Daniel P" uniqKey="Schachtman D" first="Daniel P" last="Schachtman">Daniel P. Schachtman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE, 68588, USA. daniel.schachtman@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE, 68588</wicri:regionArea>
<wicri:noRegion>68588</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anion Transport Proteins (genetics)</term>
<term>Anion Transport Proteins (metabolism)</term>
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Nitrates (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (physiology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Seedlings (drug effects)</term>
<term>Seedlings (enzymology)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (physiology)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Nitrates (métabolisme)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Plant (effets des médicaments et des substances chimiques)</term>
<term>Plant (enzymologie)</term>
<term>Plant (génétique)</term>
<term>Plant (physiologie)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (enzymologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transporteurs d'anions (génétique)</term>
<term>Transporteurs d'anions (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Anion Transport Proteins</term>
<term>Arabidopsis Proteins</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anion Transport Proteins</term>
<term>Arabidopsis Proteins</term>
<term>Chlorophyll</term>
<term>Glutaredoxins</term>
<term>Nitrates</term>
<term>Nitrogen</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Arabidopsis</term>
<term>Plant</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Plant</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glutarédoxines</term>
<term>Plant</term>
<term>Protéines d'Arabidopsis</term>
<term>Racines de plante</term>
<term>Transporteurs d'anions</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Chlorophylle</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Nitrates</term>
<term>Protéines d'Arabidopsis</term>
<term>Transporteurs d'anions</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Plant</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully elucidated in plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins (ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species (ROS) were produced in plant roots under nitrate starvation and H</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This work adds to what is known about nitrogen sensing and signaling through the findings that the ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30424734</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>281</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1512-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully elucidated in plants.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins (ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species (ROS) were produced in plant roots under nitrate starvation and H
<sub>2</sub>
O
<sub>2</sub>
treatment differentially regulated the expression of the ROXYs, suggesting the involvement of ROS in signaling pathways under nitrate deficiency.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This work adds to what is known about nitrogen sensing and signaling through the findings that the ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Ji-Yul</ForeName>
<Initials>JY</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5345-9873</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea. vinejung@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahn</LastName>
<ForeName>Ji Hoon</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Korea University, Seoul, 02841, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schachtman</LastName>
<ForeName>Daniel P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE, 68588, USA. daniel.schachtman@unl.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2017R1A2B3009624</GrantID>
<Agency>National Research Foundation of Korea</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027321">Anion Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C477335">AtNRT2.1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027321" MajorTopicYN="N">Anion Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Nitrate</Keyword>
<Keyword MajorTopicYN="N">ROS</Keyword>
<Keyword MajorTopicYN="N">ROXY</Keyword>
<Keyword MajorTopicYN="N">Signaling</Keyword>
<Keyword MajorTopicYN="N">Starvation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30424734</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1512-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1512-1</ArticleId>
<ArticleId IdType="pmc">PMC6234535</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2007;58(9):2297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17519352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Oct;27:125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26247122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Jun;105(7):1141-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Nov;94(3):1436-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2017 Feb;1860(2):218-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27838237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):472-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26662603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):607-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19190240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(3):789-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):837-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27212387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 18;138(6):1184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Oct 17;346(6207):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1643-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2922-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Oct;13(5):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):236-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25781542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2483-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22025711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 19;582(6):848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):906-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16883479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2002;1:e0011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jun;18(5):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1284-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26672074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):616-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Aug;105:37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27074220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Feb;57(3):426-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18826430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20862491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Feb 22;7:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16504059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Feb;243:84-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24428628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22227893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Apr;57(4):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 19;8:1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28674546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(13):3831-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25922480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Nov;21(11):3567-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26549233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2015 Nov 11;2:15051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26623076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 13;16(1):200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27624344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:47-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 03;6:934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(4):e1171450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27049601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2029-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1126-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Nov;238(5):871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Feb;164(2):853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Aug;46(8):1350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15946982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2014 Nov 25;3(4):559-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2017 Sep 30;491(4):1034-1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28780355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Jul 31;1:265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Oct;10(8):945-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jul;5(4):831-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2015 Apr 20;33(2):216-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25898169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 01;7:740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27313586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 May 1;68(10):2501-2512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28007951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Jung, Ji Yul" sort="Jung, Ji Yul" uniqKey="Jung J" first="Ji-Yul" last="Jung">Ji-Yul Jung</name>
</noRegion>
<name sortKey="Ahn, Ji Hoon" sort="Ahn, Ji Hoon" uniqKey="Ahn J" first="Ji Hoon" last="Ahn">Ji Hoon Ahn</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Schachtman, Daniel P" sort="Schachtman, Daniel P" uniqKey="Schachtman D" first="Daniel P" last="Schachtman">Daniel P. Schachtman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000286 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000286 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30424734
   |texte=   CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30424734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020